Catégories
Généralités

Adaptations du système cardiovasculaire induites par l'entraînement cardiovasculaire

Comme nous l'avons déjà expliqué, un entraînement cardio-vasculaire régulier et systématique entraîne une augmentation des performances physiques et provoque des adaptations notables dans le système cardio-vasculaire et dans la musculature de travail. La couverture des besoins en oxygène, qui augmentent avec le travail physique, est assurée par un système de transport d'oxygène sophistiqué. Ce système comporte plusieurs niveaux, chacun d'entre eux étant régi par des mécanismes différents qui peuvent limiter le transport de l'oxygène. Sans entrer dans les détails, ces étapes sont les suivantes

  1. les poumons, respectivement les échanges gazeux pulmonaires,
  2. le cœur et le sang,
  3. les capillaires musculaires et enfin
  4. les mitochondries.

Composants de l'absorption d'oxygène (Bassett et Howley 2000)

Pour simplifier, on peut diviser les déterminants de l'approvisionnement en oxygène en une composante centrale et une composante périphérique (en laissant de côté le premier déterminant, à savoir les échanges gazeux pulmonaires, car ils ne limitent pas l'approvisionnement en oxygène chez les personnes en bonne santé et "au niveau de la mer"). Selon la loi postulée dès 1870 par Adolf Fick, la composante centrale de la consommation d'oxygène est le débit cardiaque (combien de litres de sang le cœur pompe-t-il par minute) et la composante périphérique est la différence artério-veineuse d'oxygène (quelle est la différence de concentration d'oxygène entre le sang artériel et le sang veineux, ou plus simplement : quelle quantité d'oxygène l'organe "prélève" dans le sang).

La formule de Fick est la suivante (les abréviations et les unités de mesure sont entre parenthèses) :

Consommation d'oxygène (VO2 en ml/min) = débit cardiaque (Q en l/min) x différence artério-veineuse d'oxygène (avDO2 en ml/dl)

Le volume cardiaque par minute se calcule quant à lui comme le produit du volume des battements (Vs en ml) et de la fréquence cardiaque (fH en battements par minute).
Donc : combien de sang le cœur éjecte par battement x combien de fois le cœur bat par minute.

Central vs. périphérique (Fick 1870)

Résumons la situation : La composante centrale de la consommation d'oxygène dépend de la fréquence cardiaque et du volume de battement, la composante périphérique de l'épuisement de l'oxygène.

Étant donné que le volume de battements augmente avec un entraînement spécifique, mais que le débit cardiaque (ainsi que la demande en oxygène) reste à peu près le même pour un effort sous-maximal, nous mesurons une fréquence cardiaque plus basse après une phase d'entraînement pour un effort identique. C'est donc le volume de battements qui augmente grâce à l'entraînement (meilleure fonctionnalité de la contraction cardiaque et muscle cardiaque plus grand). Pour une fréquence cardiaque maximale constante, la capacité maximale de transport sanguin du cœur (le débit cardiaque maximal) augmente donc. Parallèlement, la fréquence cardiaque au repos diminue, car le cœur doit battre moins souvent pour transporter la même quantité de sang en raison du volume de battements plus important.

L'entraînement n'améliore pas seulement la composante centrale, mais aussi la différence artério-veineuse d'oxygène et donc l'épuisement de l'oxygène dans le sang. Cette amélioration est principalement due à une meilleure capillarisation (volume capillaire plus important dans les tissus, p. ex. plus de capillaires par fibre musculaire) et à un volume mitochondrial accru (mitochondries plus nombreuses ou plus grandes). En périphérie, la répartition fine de l'oxygène s'améliore ainsi que son utilisation.

Il est intéressant de noter que les composantes centrale et périphérique de la consommation d'oxygène peuvent être entraînées de manière plus ou moins spécifique. En d'autres termes, il existe des méthodes d'entraînement qui sollicitent les deux composantes de manière relativement sélective et les améliorent par la suite. C'est dans ce contexte qu'il faut voir l'affirmation faite au début sur les avantages du HIIT. Pour simplifier l'application de ces faits physiologiques à l'entraînement, nous avons développé le modèle à 3 composantes de la capacité cardiovasculaire. Celui-ci se compose du potentiel, de l'exploitation et de la résistance à la fatigue et est présenté ci-dessous.

Résumons la situation : La composante centrale de la consommation d'oxygène dépend de la fréquence cardiaque et du volume de battement, la composante périphérique de l'épuisement de l'oxygène.

Étant donné que le volume de battements augmente avec un entraînement spécifique, mais que le débit cardiaque (ainsi que la demande en oxygène) reste à peu près le même pour un effort sous-maximal, nous mesurons une fréquence cardiaque plus basse après une phase d'entraînement pour un effort identique. C'est donc le volume de battements qui augmente grâce à l'entraînement (meilleure fonctionnalité de la contraction cardiaque et muscle cardiaque plus grand). Pour une fréquence cardiaque maximale constante, la capacité maximale de transport sanguin du cœur (le débit cardiaque maximal) augmente donc. Parallèlement, la fréquence cardiaque au repos diminue, car le cœur doit battre moins souvent pour transporter la même quantité de sang en raison du volume de battements plus important.

L'entraînement n'améliore pas seulement la composante centrale, mais aussi la différence artério-veineuse d'oxygène et donc l'épuisement de l'oxygène dans le sang. Cette amélioration est principalement due à une meilleure capillarisation (volume capillaire plus important dans les tissus, p. ex. plus de capillaires par fibre musculaire) et à un volume mitochondrial accru (mitochondries plus nombreuses ou plus grandes). En périphérie, la répartition fine de l'oxygène s'améliore ainsi que son utilisation.

Il est intéressant de noter que les composantes centrale et périphérique de la consommation d'oxygène peuvent être entraînées de manière plus ou moins spécifique. En d'autres termes, il existe des méthodes d'entraînement qui sollicitent les deux composantes de manière relativement sélective et les améliorent par la suite. C'est dans ce contexte qu'il faut voir l'affirmation faite au début sur les avantages du HIIT. Pour simplifier l'application de ces faits physiologiques à l'entraînement, nous avons développé le modèle à 3 composantes de la capacité cardiovasculaire. Celui-ci se compose du potentiel, de l'exploitation et de la résistance à la fatigue et est présenté ci-dessous.

Résumons la situation : La composante centrale de la consommation d'oxygène dépend de la fréquence cardiaque et du volume de battement, la composante périphérique de l'épuisement de l'oxygène.

Étant donné que le volume de battements augmente avec un entraînement spécifique, mais que le débit cardiaque (ainsi que la demande en oxygène) reste à peu près le même pour un effort sous-maximal, nous mesurons une fréquence cardiaque plus basse après une phase d'entraînement pour un effort identique. C'est donc le volume de battements qui augmente grâce à l'entraînement (meilleure fonctionnalité de la contraction cardiaque et muscle cardiaque plus grand). Pour une fréquence cardiaque maximale constante, la capacité maximale de transport sanguin du cœur (le débit cardiaque maximal) augmente donc. Parallèlement, la fréquence cardiaque au repos diminue, car le cœur doit battre moins souvent pour transporter la même quantité de sang en raison du volume de battements plus important.

L'entraînement n'améliore pas seulement la composante centrale, mais aussi la différence artério-veineuse d'oxygène et donc l'épuisement de l'oxygène dans le sang. Cette amélioration est principalement due à une meilleure capillarisation (volume capillaire plus important dans les tissus, p. ex. plus de capillaires par fibre musculaire) et à un volume mitochondrial accru (mitochondries plus nombreuses ou plus grandes). En périphérie, la répartition fine de l'oxygène s'améliore ainsi que son utilisation.

Il est intéressant de noter que les composantes centrale et périphérique de la consommation d'oxygène peuvent être entraînées de manière plus ou moins spécifique. En d'autres termes, il existe des méthodes d'entraînement qui sollicitent les deux composantes de manière relativement sélective et les améliorent par la suite. C'est dans ce contexte qu'il faut voir l'affirmation faite au début sur les avantages du HIIT. Pour simplifier l'application de ces faits physiologiques à l'entraînement, nous avons développé le modèle à 3 composantes de la capacité cardiovasculaire. Celui-ci se compose du potentiel, de l'exploitation et de la résistance à la fatigue et est présenté ci-dessous.

Le potentiel

On appelle potentiel la quantité maximale d'oxygène que le corps humain est capable d'utiliser (VO2max). L'oxygène est absorbé dans le sang à partir de l'air ambiant dans les poumons. Le sang riche en oxygène alimente ensuite tous les organes en oxygène via le système cardiovasculaire. Dans la musculature squelettique, l'oxygène est ensuite absorbé pour fournir de l'énergie aux cellules musculaires. Le flux sanguin dans le système cardiovasculaire est déterminé en grande partie par la capacité de pompage du cœur. Celle-ci résulte du produit de la fréquence cardiaque et du volume de battement (volume de sang qui peut être éjecté par un seul battement de cœur). Un entraînement par intervalles régulier et intensif entraîne une augmentation du volume des battements et donc une augmentation de la capacité de pompage du cœur, ce qui entraîne une diminution de la fréquence cardiaque lors d'efforts sous-maximaux et au repos (fréquence cardiaque de repos plus basse). Suite à cette adaptation, la fréquence cardiaque augmente également. VO2max.

L'épuisement

L'épuisement indique l'intensité qui peut encore être fournie en tant que performance d'endurance. Selon la définition, cette performance doit pouvoir être réalisée après un échauffement de 10 minutes pendant 20 minutes avec une "concentration constante de lactate dans le sang" (max. lactat steady state). L'épuisement détermine donc dans quelle mesure le potentiel dans le domaine de l'endurance peut être exploité (%VO2max). Il est souvent appelé "seuil anaérobie". Plus la mise à disposition d'énergie aérobie est développée (volume mitochondrial plus élevé, meilleure capillarisation), plus l'épuisement est élevé. Une amélioration de l'épuisement se traduit par la possibilité de fournir des intensités plus élevées dans le domaine de l'endurance.    

La résistance à la fatigue

La résistance à la fatigue définit la durée pendant laquelle un effort d'endurance quelconque peut être fourni (tlim). Différents facteurs jouent un rôle important à cet égard :

  • Un métabolisme aérobie bien entraîné assure la fourniture d'énergie à long terme.    
  • Une thermorégulation efficace permet d'éviter que la température du corps n'augmente trop pendant l'entraînement et ne limite les performances.
  • Plus les réserves de glycogène dans les muscles sont importantes, plus les efforts d'endurance intenses peuvent être réalisés longtemps.
  • Plus les muscles respiratoires sont entraînés, moins ils se fatiguent rapidement pendant les efforts d'endurance intenses.
  • Les aspects mentaux jouent également un rôle déterminant (combien de temps l'arrêt de l'effort peut être retardé lors d'un effort d'endurance fatigant).

Les adaptations de l'entraînement sur tous les points mentionnés ont pour effet de prolonger la durée pendant laquelle une performance sous-maximale peut être fournie.

Avec le méta-entraînement, tu entraînes de manière ciblée ces 3 composantes de la capacité d'endurance qui limitent la performance. Demande conseil à ton COACH.