1ère introduction
Qu'il s'agisse de cellules nerveuses qui transmettent des impulsions électriques ou de cellules musculaires qui fournissent un travail mécanique, chaque cellule du corps humain a besoin d'énergie. Cette énergie est stockée à l'intérieur des cellules sous forme d'adénosine triphosphate (ATP) et est libérée lors de la décomposition de l'ATP en adénosine diphosphate (ADP) et en phosphate libre (Pi) est libérée. Étant donné que les muscles ne stockent qu'une quantité très limitée d'ATP, il faut en permanence assurer le réapprovisionnement en ATP à partir d'ADP et de Pi est régénéré. Cette régénération se fait par le biais de 3 systèmes différents, dont l'expression est adaptée aux propriétés des fibres musculaires (essentiellement l'isoforme MyHC, "donc le type de fibre musculaire"). Les systèmes sont
- le système phosphagène (puissance métabolique la plus élevée mais capacité la plus faible)
- le système glycolytique (performance métabolique plus faible mais capacité plus élevée que le système phosphagène)
- la respiration mitochondriale (puissance métabolique la plus faible, mais capacité de loin la plus importante)
2. le système phosphagène
La resynthèse de l'ATP par le système phosphagène a lieu dans le cytoplasme et comprend deux réactions chimiques par lesquelles la fibre musculaire peut récupérer de l'ATP relativement rapidement (réaction créatine kinase et adénylate kinase). 85% de la capacité déjà modeste du système sont limités par la taille des réserves intracellulaires de phosphocréatine (PCr), 15% sont consacrés à la récupération d'énergie par la réaction de l'adénylate kinase.
- La créatine kinase (enzyme) catalyse la réaction de l'ADP et du PCr en ATP et en créatine (système créatine kinase PCr).
- L'adénylate kinase (enzyme) transforme 2 parties d'ADP en 1 partie d'ATP et 1 partie d'AMP (adénosine monophosphate).
L'AMP et ses produits de dégradation jouent un rôle central en tant que molécules de signalisation intracellulaire. Par exemple, l'AMP stimule indirectement le transport du glucose et des acides gras dans les cellules musculaires ainsi que la métabolisation de ces sources d'énergie dans les mitochondries. De plus, elle stimule indirectement la décomposition du glycogène. Enfin, elle est liée à la biogenèse mitochondriale et les concentrations intracellulaires d'ADP et de créatine stimulent la respiration mitochondriale. Ainsi, les produits de dégradation de la décomposition de l'ATP et les composants du système phosphagène influencent directement les deux autres systèmes de production d'énergie. Comme le système phosphagène est soutenu dès le début par les deux autres systèmes, il peut contribuer de manière déterminante à la fourniture d'énergie pendant plus de 20 secondes. S'il était livré à lui-même, les réserves de PCr seraient épuisées au bout de 10 secondes. Dans la vie quotidienne, le système phosphagène nous permet d'amortir les changements rapides et de courte durée des besoins en ATP (par exemple, se lever d'une chaise, passer de la marche au sprint, etc. Le système phosphagène est particulièrement bien développé dans les fibres musculaires de type II par rapport aux fibres de type I. Les fibres musculaires de type II sont les plus riches en ATP.
3 Le système glycolytique
Le système glycolytique comprend le processus biochimique de la glycolyse. Celle-ci a lieu dans le cytoplasme cellulaire, tout comme les processus du système phosphagène. Le point de départ de la glycolyse est
glucose-6-phosphate, qui peut provenir soit du glucose libre (glycémie issue de l'alimentation, glycogène hépatique décomposé ou gluconéogenèse dans le foie à partir d'acides aminés), soit du produit de dégradation directe du glycogène musculaire. Tout comme le système phosphagène, le système glycolytique est plus développé dans les fibres musculaires de type II que dans les fibres musculaires de type I, les fibres musculaires de type II disposant également de plus grandes réserves de glycogène que les fibres musculaires de type I et pouvant mieux décomposer le glycogène. Les fibres musculaires de type II sont donc conçues pour "préparer" l'ATP via le système glycolytique. C'est pourquoi les sollicitations musculaires intenses, comme l'entraînement musculaire, ont pour conséquence que les réserves de glycogène des fibres musculaires de type II se vident en premier lieu en raison du recrutement des grandes unités motrices, alors que l'entraînement d'endurance vide principalement les réserves de glycogène des fibres de type I. Les fibres musculaires de type I sont donc plus sensibles aux sollicitations musculaires intenses.
A la fin des 10 étapes de la glycolyse, on obtient la molécule de pyruvate. Celle-ci peut alors être soit transformée en lactate dans le cytoplasme cellulaire, soit introduite dans le cycle du citrate dans les mitochondries.
Lorsque le pyruvate issu de la glycolyse est transformé en lactate, on parle de glycolyse anaérobie. Ceci, non pas parce qu'il n'y a pas d'oxygène, mais tout simplement parce que ces réactions ne nécessitent pas d'oxygène. La conversion de a) pyruvate en lactate et b) vice versa est catalysée par différentes formes de l'enzyme lactate déshydrogénase, avec par exemple une prédominance de a) dans les fibres musculaires de type II et de b) dans les fibres musculaires de type I. Pour simplifier, les fibres musculaires glycolytiques produisent donc du lactate et le libèrent dans le sang. Par la suite, les fibres musculaires oxydatives absorbent le lactate, le transforment en pyruvate et l'oxydent. D'autres organes absorbent également le lactate dans le sang et utilisent cette molécule riche en énergie comme matière première pour les processus métaboliques (foie : gluconéogenèse et production d'énergie ; cœur, cerveau, reins : production d'énergie). Contrairement à une opinion largement répandue, le lactate n'est donc pas un déchet du métabolisme anaérobie. Il parvient dans le sang via des transporteurs spécifiques toujours en combinaison avec un proton de la cellule musculaire glycolytique (l'absorption dans les fibres musculaires oxydatives se fait également via des transporteurs).
Si le pyruvate n'est pas transformé en lactate, il pénètre dans la mitochondrie et est transformé en acétylcoenzyme A (acétyl-CoA) via la pyruvate déshydrogénase. L'acétyl-CoA est la substance de base pour la production d'énergie aérobie dans la mitochondrie. C'est pourquoi on parle dans ce cas de glycolyse aérobie ("en utilisant de l'oxygène", et non "en présence d'oxygène"). En plus de la production d'acétyl-CoA à partir du pyruvate, l'acétyl-CoA peut également être produit dans les mitochondries par le processus de β-oxydation à partir des acides gras. Les acides gras arrivent du sang dans les fibres musculaires via des transporteurs d'acides gras, les fibres musculaires de type I étant mieux équipées de ces transporteurs que les fibres musculaires de type II. Dans le plasma cellulaire des fibres musculaires, les acides gras sont activés et transportés vers les mitochondries. Pour ce faire, ils sont brièvement liés à la carnitine. La carnitine joue donc le rôle de navette dans le métabolisme des graisses. Sans carnitine, aucune graisse ne pourrait être métabolisée. De plus, la carnitine fait office de tampon pour l'acétyl-CoA, dans la mesure où, en cas de forte sollicitation musculaire, la quantité d'acétyl-CoA produite est supérieure à celle qui peut être injectée à court terme dans le cycle du citrate. Une accumulation d'acétyl-CoA inhibe l'oxydation des acides gras et augmente la production de lactate.
4 La respiration mitochondriale
A l'intérieur de la mitochondrie, l'acétyl-CoA se forme à partir des acides gras activés via la β-oxydation. Celui-ci est ensuite métabolisé dans le cycle du citrate, tout comme l'acétyl-CoA issu du pyruvate, et est finalement transformé en ADP et Pi ATP se régénère. Dans le cycle du citrate, l'acétyl-CoA produit du dioxyde de carbone (CO2(qui diffuse dans le sang et est expiré par les poumons) et des équivalents de réduction
(molécules qui transfèrent de l'hydrogène et/ou des électrons). Les équivalents réducteurs se déplacent ensuite le long de la membrane mitochondriale interne, de complexe protéique en complexe protéique, et sont finalement transférés à l'oxygène, libérant ainsi de l'eau et de la chaleur. Ce processus complexe génère un potentiel électrochimique dont l'énergie est utilisée pour la resynthèse de l'ATP. La consommation d'oxygène mitochondriale détermine donc les besoins en oxygène de l'organisme.