Catégories
Généralités

Diabète sucré

Le diabète sucré (abrégé par la suite en DM) désigne une pathologie caractérisée par des taux de sucre élevés dans le sang ou un trouble de l'utilisation des glucides apportés suite à un manque absolu ou relatif d'insuline et fait partie du groupe des troubles du métabolisme.

Le DM de type 1 est défini par une carence absolue en insuline, d'origine génétique ou immunologique, et se manifeste souvent à un jeune âge. Dans 80% des cas, le mécanisme pathologique est la destruction des cellules bêta des îlots de Langerhans par des auto-anticorps.

Dans le cas du DM de type 2 (90% des diabétiques en Europe occidentale), l'insuline est mise à disposition dans les cellules bêta du pancréas, mais ne peut pas déployer son effet sur l'organe de la réussite. On parle dans ce cas de résistance à l'insuline. Cette résistance est généralement acquise et est souvent liée au syndrome métabolique.

En outre, un DM peut survenir en cas de troubles secondaires, par exemple en cas de pancréatite aiguë ou chronique, de tumeur, d'induction médicamenteuse, etc.

Symptômes

Au stade précoce d'un DM, les symptômes sont souvent absents. Chez les diabétiques de type 1, les symptômes apparaissent souvent plus tôt au cours de la maladie que chez les diabétiques de type 2. Les symptômes classiques sont la polyurie, la polydipsie et une perte de poids due à la déshydratation. Par ailleurs, des symptômes non spécifiques tels qu'une baisse générale des performances, une inappétence, une sensibilité accrue aux infections, une mauvaise cicatrisation des plaies, un prurit, etc. peuvent également apparaître.

Le coma diabétique, ou choc hypoglycémique, est le tableau complet et constitue toujours une situation d'urgence.

Thérapie

Quel que soit le type de DM, l'éducation des patients est essentielle. L'entraînement physique et le régime alimentaire permettent de retarder le traitement médicamenteux et les complications tardives. Si le diabète de type 2 ne donne pas les résultats escomptés, il convient de discuter avec le médecin d'un traitement antidiabétique oral.

Chez le diabétique de type 1, une substitution par insuline doit par définition être mise en place. Ici aussi, l'éducation du patient est importante en ce qui concerne les intervalles entre les repas et les injections, l'importance générale de l'alimentation et du travail physique, ainsi que la reconnaissance et la résolution des états hypoglycémiques.

Si le traitement n'est pas suivi de manière conséquente, des complications tardives irréversibles peuvent souvent survenir. Les reins, les yeux, les vaisseaux et les nerfs peuvent subir des dommages importants, ce qui aggrave nettement l'évolution de la maladie.

Formation

Les diabétiques doivent également suivre un programme d'entraînement normal ! Il est recommandé de pratiquer au moins 2,5 h d'entraînement d'endurance et de musculation de niveau moyen à élevé. Le méta-entraînement représente une forme d'entraînement efficace pour augmenter la performance générale. Au début de la phase d'entraînement, il faut surtout choisir des appareils d'endurance qui ménagent les articulations, comme le vélo ergométrique ou le vélo elliptique.

Un entraînement musculaire intensif et une alimentation adaptée permettent de modifier le rapport entre la masse graisseuse et la masse musculaire, ce qui augmente jusqu'à 50 % la sensibilité à l'insuline et réduit le risque de diabète. L'entraînement musculaire est donc aussi efficace que les médicaments contre le diabète.

Catégories
Généralités

Influence de l'alimentation sur le développement musculaire

L'alimentation joue un rôle important dans le développement musculaire. Toutefois, elle n'est efficace qu'en combinaison avec l'entraînement musculaire, sans lequel aucune croissance musculaire n'est possible. Le plus important en termes d'alimentation pour la construction musculaire est un apport suffisant en protéines. Si l'apport total en protéines est trop faible, la masse musculaire ne peut pas être développée. En plus de l'apport total en protéines, la qualité des sources de protéines utilisées joue un rôle important. En outre, un timing judicieux de l'apport alimentaire peut avoir un effet positif supplémentaire sur l'adaptation à l'entraînement musculaire. Par exemple, l'apport d'acides aminés essentiels immédiatement après l'entraînement musculaire favorise la synthèse des protéines musculaires, tandis que les glucides (et certains acides aminés) ont une influence positive sur le bilan protéique en inhibant la dégradation des protéines. En plus des macronutriments, la créatine monohydrate a une influence positive sur la masse maigre. En outre, les acides gras oméga 3 peuvent augmenter la synthèse des protéines musculaires (surtout chez les personnes âgées) car ils ont un effet anti-inflammatoire. Consommez donc environ 20 g de protéines de haute qualité toutes les 3 à 4 heures. 

 update Nutrition propose des poudres de protéines de haute qualité dans son assortiment, avec lesquelles vous pouvez facilement couvrir vos besoins en protéines. Vous trouverez les produits sous www.update-lifestyle.ch

Catégories
Généralités

Substances interdites dans les boosters d'entraînement

Les boosters d'entraînement sont très populaires. Ils sont pris pour améliorer le pump (circulation sanguine dans les muscles) et la vigilance pendant l'entraînement. Les boosters d'entraînement sont surtout connus grâce au booster Jack 3D. La substance chimique utilisée dans le Jack 3d est la 1,3-diméthylamylamine. Cette substance est également connue sous de nombreux autres noms tels que DMAA, méthylhexanamine, géranium, 2-amino-4-methylhexane, 4-méthyl-2-hexanamine, etc. 

 Similitude structurelle entre l'amphétamine (en haut) et la méthylhexanamine (en bas). La méthylhexanamine a été interdite sur le marché européen en raison des décès qu'elle a provoqués. Une nouvelle substance aux effets similaires est utilisée dans les boosters, notamment aux États-Unis : la 1,3-diméthylbutylamine (également appelée DMBA ou citrate AMP) est une substance synthétique à laquelle on attribue un effet stimulant, similaire à celui de la 1,3-diméthylamylamine (DMAA), structurellement proche. Le DMBA est lui aussi officiellement interdit depuis2015, mais il est encore souvent vendu, surtout en Allemagne. Bien entendu, on trouve dans les boosters la DMHA (diméthylhexylamine), la substance la plus proche de la DMAA en termes d'effets. Le DMHA est actuellement autorisé. De plus, la nouvelle substance est actuellement examinée par la FDA (U.S. Food and Drug Administration) et ne sera donc probablement bientôt plus disponible. Ta santé est-elle importante pour toi ? Alors nous te conseillons de ne pas toucher à ce genre de produits !

Catégories
Généralités

Sinetrol® (en anglais)

Si l'on souhaite stimuler le métabolisme et réduire le taux de graisse corporelle, la qualité, la quantité et le moment de l'apport alimentaire sont déterminants, en plus de l'activité physique.

Sinetrol® facilite la perte de graisse en augmentant la lipolyse, réduit les fringales et permet un contrôle sain de la sensation de faim. Associé à une alimentation équilibrée, Sinetrol® permet une perte de graisse corporelle réussie et est donc optimal aussi bien pour les sportifs qui souhaitent améliorer leurs performances en réduisant leur taux de graisse que pour les personnes pour qui la perte de graisse corporelle pure est une priorité pour des raisons esthétiques.

Sinetrol® contient des extraits de jus, de zeste et de pépins de trois agrumes du régime méditerranéen, à savoir l'orange sanguine, l'orange douce et le pamplemousse, ainsi que sur les baies de la plante tropicale guarana.

Le produit présente un mécanisme d'action lipolytique. Par lipolyse, on entend le processus catabolique qui conduit à la dégradation des triglycérides stockés dans les cellules adipeuses et à la libération consécutive d'acides gras libres et de glycérol.

Le polyphénol le plus important du Sinetrol® est la naringine, une substance amère présente en grande quantité dans les pamplemousses et qui est surtout connue comme substance naturelle du pamplemousse. Elle est la principale responsable du goût amer et est également présente dans les pomelos. Selon des études, il déclencherait l'expression de gènes, chacun d'entre eux améliorant l'utilisation des acides gras libres pour la production d'énergie par le corps. Les acides gras sont un carburant important pour le foie, les reins, les muscles cardiaques et squelettiques. La lipolyse est le principal mécanisme de régulation de l'approvisionnement en énergie lipidique de l'organisme, car elle contrôle la libération d'acides gras libres dans le plasma.

Formule de structure de la naringine.

Le deuxième composé bioactif essentiel de Sinetrol® est la néohespéridine. De plus, les résultats d'études montrent que Sinetrol® entraîne une diminution des inflammations chroniques et de bas grade, ce qui a des effets positifs supplémentaires sur le métabolisme.

update Fitness propose des produits Sinetrol®. Tu trouveras les capsules Shape Burner ou la boisson Shape Burner dans les distributeurs de boissons de tous les centres de fitness update.

Catégories
Généralités

La lipolyse

La lipolyse est la décomposition hydrolytique des graisses neutres dans le tissu adipeux. La graisse naturelle est constituée d'une molécule dans laquelle le glycérol est estérifié avec trois acides gras (appelés triacylglycérols ou triglycérides).

La lipolyse qui se déroule dans le tissu adipeux peut être divisée en trois étapes, au cours desquelles un acide gras est séparé à chaque étape.

Les acides gras issus de la scission enzymatique sont libérés dans le sang. Ils peuvent être absorbés et métabolisés par les muscles pour la β-oxydation ou par le foie pour la cétogenèse (formation de corps cétoniques en état métabolique de carence en glucides). Les acides gras à chaîne courte peuvent se déplacer librement dans le sang, tandis que les acides gras à chaîne longue sont liés à des protéines de transport. Le glycérol produit par la lipolyse est également dégradé par le foie et utilisé pour la gluconéogenèse ou la synthèse d'acides gras.

Régulation

La lipolyse est principalement contrôlée par l'insuline et les catécholamines (par ex. l'adrénaline et la noradrénaline). Dans ce contexte, l'insuline a un effet anabolique (inhibition de la lipolyse) et l'adrénaline un effet catabolique (augmentation de la lipolyse). Ces effets sont principalement dus à l'influence directe ou indirecte de l'enzyme lipase hormonosensible (HSL).

  • Lorsque les besoins énergétiques augmentent (par exemple lors de l'entraînement), l'organisme a intérêt à mobiliser ses réserves d'énergie. Il augmente alors les concentrations de catécholamines dans le plasma sanguin. Les catécholamines activent certaines voies de signalisation cataboliques des cellules adipeuses. Celle-ci transmet un "signal de faim" intracellulaire et active la lipase hormonosensible. La lipase hormono-sensible régule la libération des acides gras du tissu adipeux.
  • Si l'offre en glucides et en certains acides aminés augmente dans le sang, l'insuline est libérée. Par le biais de voies de signalisation intracellulaires, l'insuline inhibe notamment de plus en plus la lipase hormonosensible, ce qui entraîne une inhibition de la lipolyse. Parallèlement, l'insuline provoque une accumulation de triacylglycérols dans le tissu adipeux.

Tu découvriras dans le prochain blog quel supplément peut aider à augmenter ta lipolyse.

Catégories
Généralités

Aspects de la perte de graisse

La perte de graisse est un processus multifactoriel qui est influencé par les points suivants : entraînement musculaire, entraînement cardio-vasculaire, alimentation et suppléments.

Les facteurs suivants influencent la perte de graisse :

Muskeltraining

  • Consommation aiguë d'énergie
  • Taux de synthèse des protéines
  • "Effet de post-combustion"

Alimentation

  • Apport d'énergie
  • Répartition des nutriments

Entraînement cardio-vasculaire

  • Consommation aiguë d'énergie
  • Oxydation des graisses
  • "Effet de post-combustion"

Suppléments

  • Lipolyse
  • Consommation d'énergie

Comment le fait d'être "plus musclé" influence-t-il la consommation d'énergie ?

Augmentation du chiffre d'affaires du travail

Plus l'homme est lourd, plus sa consommation d'énergie est élevée

Augmentation de la Chiffre d'affaires de base

Le taux de synthèse des protéines musculaires est de 0,075%/h = 1,8%/d, ce qui correspond à 485 kcal/d pour 50 kg de masse musculaire. 1 kg de masse musculaire en plus augmente donc ton métabolisme de base d'environ 50 kcal par jour.

Augmentation de la chiffre d'affaires pour la constitution de la masse musculaire et les processus de réparation.

Le développement de la masse musculaire et les processus de réparation des muscles consomment de l'énergie. La consommation d'énergie a tendance à être plus importante lorsque l'intensité est élevée.

L'élimination des graisses se fait en deux étapes

La dégradation des graisses se fait en deux étapes. D'une part, les acides gras doivent être "extraits" du tissu adipeux dans une première étape, appelée lipolyse. D'autre part, dans une deuxième étape, l'oxydation des acides gras a lieu dans le cycle de Krebs dans les mitochondries (mise à disposition d'énergie).

Tu découvriras dans le prochain blog ce qu'est exactement la lipolyse et comment elle est régulée.

Catégories
Généralités

Composantes de la capacité d'endurance et adaptations de l'entraînement

Potentiel
On appelle potentiel la quantité maximale d'oxygène que le corps humain est capable d'utiliser (VO2max). L'oxygène est absorbé dans le sang à partir de l'air ambiant au niveau des poumons. Le sang riche en oxygène alimente ensuite tous les organes en oxygène via le système cardiovasculaire. Dans les muscles squelettiques, l'oxygène est ensuite absorbé pour fournir de l'énergie aux cellules musculaires. Le flux sanguin dans le système cardiovasculaire est déterminé en grande partie par la capacité de pompage du cœur. Celle-ci résulte du produit de la fréquence cardiaque et du volume de battement (volume de sang qui peut être éjecté par un seul battement de cœur). Un entraînement par intervalles régulier et intensif entraîne une augmentation du volume des battements et donc une augmentation de la capacité de pompage du cœur, ce qui entraîne une diminution de la fréquence cardiaque lors d'efforts sous-maximaux et au repos (fréquence cardiaque de repos plus basse). Suite à cette adaptation, la VO2max augmente également.
Fréquence cardiaque d'entraînement : 90 - 95 % de la fréquence cardiaque maximale ou selon Borg 8 - 9

Épuisement
L'épuisement indique l'intensité qui peut encore être fournie en tant que performance d'endurance. Selon la définition, cette performance doit pouvoir être réalisée pendant 20 minutes à "concentration constante de lactate dans le sang" après un échauffement de 10 minutes (état d'équilibre maximal du lactate). L'épuisement détermine donc à quel point le potentiel peut être exploité dans le domaine de l'endurance (%VO2max). Il est souvent appelé "seuil anaérobie". Plus la mise à disposition d'énergie aérobie est développée (volume mitochondrial plus élevé, meilleure capillarisation), plus l'utilisation est élevée. Une amélioration de l'épuisement se traduit par la possibilité de fournir des intensités plus élevées dans le domaine de l'endurance.
Fréquence cardiaque d'entraînement : 65 - 75 % de la fréquence cardiaque maximale ou selon Borg 3 -5

Résistance à la fatigue
La résistance à la fatigue définit la durée pendant laquelle un effort d'endurance quelconque peut être fourni (tlim).
Différents facteurs jouent un rôle important à cet égard :

  • Un métabolisme aérobie bien entraîné assure la fourniture d'énergie à long terme.
  • Une thermorégulation efficace permet d'éviter que la température du corps n'augmente trop pendant l'entraînement et ne limite les performances.
  • Plus les réserves de glycogène dans les muscles sont importantes, plus les efforts d'endurance intenses peuvent être réalisés longtemps.
  • Plus les muscles respiratoires sont entraînés, moins ils se fatiguent rapidement pendant les efforts d'endurance intenses.
  • Les aspects mentaux jouent également un rôle déterminant (combien de temps l'arrêt de l'effort peut être retardé lors d'un effort d'endurance fatigant).

Fréquence cardiaque d'entraînement : 85 - 90 % de la fréquence cardiaque maximale ou selon Borg 7 - 8

Ton coach te conseillera volontiers pour la mise en œuvre.

Catégories
Généralités

Adaptations du système cardiovasculaire induites par l'entraînement cardiovasculaire

Comme nous l'avons déjà expliqué, un entraînement cardio-vasculaire régulier et systématique entraîne une augmentation des performances physiques et provoque des adaptations notables dans le système cardio-vasculaire et dans la musculature de travail. La couverture des besoins en oxygène, qui augmentent avec le travail physique, est assurée par un système de transport d'oxygène sophistiqué. Ce système comporte plusieurs niveaux, chacun d'entre eux étant régi par des mécanismes différents qui peuvent limiter le transport de l'oxygène. Sans entrer dans les détails, ces étapes sont les suivantes

  1. les poumons, respectivement les échanges gazeux pulmonaires,
  2. le cœur et le sang,
  3. les capillaires musculaires et enfin
  4. les mitochondries.

Composants de l'absorption d'oxygène (Bassett et Howley 2000)

Pour simplifier, on peut diviser les déterminants de l'approvisionnement en oxygène en une composante centrale et une composante périphérique (en laissant de côté le premier déterminant, à savoir les échanges gazeux pulmonaires, car ils ne limitent pas l'approvisionnement en oxygène chez les personnes en bonne santé et "au niveau de la mer"). Selon la loi postulée dès 1870 par Adolf Fick, la composante centrale de la consommation d'oxygène est le débit cardiaque (combien de litres de sang le cœur pompe-t-il par minute) et la composante périphérique est la différence artério-veineuse d'oxygène (quelle est la différence de concentration d'oxygène entre le sang artériel et le sang veineux, ou plus simplement : quelle quantité d'oxygène l'organe "prélève" dans le sang).

La formule de Fick est la suivante (les abréviations et les unités de mesure sont entre parenthèses) :

Consommation d'oxygène (VO2 en ml/min) = débit cardiaque (Q en l/min) x différence artério-veineuse d'oxygène (avDO2 en ml/dl)

Le volume cardiaque par minute se calcule quant à lui comme le produit du volume des battements (Vs en ml) et de la fréquence cardiaque (fH en battements par minute).
Donc : combien de sang le cœur éjecte par battement x combien de fois le cœur bat par minute.

Central vs. périphérique (Fick 1870)

Résumons la situation : La composante centrale de la consommation d'oxygène dépend de la fréquence cardiaque et du volume de battement, la composante périphérique de l'épuisement de l'oxygène.

Étant donné que le volume de battements augmente avec un entraînement spécifique, mais que le débit cardiaque (ainsi que la demande en oxygène) reste à peu près le même pour un effort sous-maximal, nous mesurons une fréquence cardiaque plus basse après une phase d'entraînement pour un effort identique. C'est donc le volume de battements qui augmente grâce à l'entraînement (meilleure fonctionnalité de la contraction cardiaque et muscle cardiaque plus grand). Pour une fréquence cardiaque maximale constante, la capacité maximale de transport sanguin du cœur (le débit cardiaque maximal) augmente donc. Parallèlement, la fréquence cardiaque au repos diminue, car le cœur doit battre moins souvent pour transporter la même quantité de sang en raison du volume de battements plus important.

L'entraînement n'améliore pas seulement la composante centrale, mais aussi la différence artério-veineuse d'oxygène et donc l'épuisement de l'oxygène dans le sang. Cette amélioration est principalement due à une meilleure capillarisation (volume capillaire plus important dans les tissus, p. ex. plus de capillaires par fibre musculaire) et à un volume mitochondrial accru (mitochondries plus nombreuses ou plus grandes). En périphérie, la répartition fine de l'oxygène s'améliore ainsi que son utilisation.

Il est intéressant de noter que les composantes centrale et périphérique de la consommation d'oxygène peuvent être entraînées de manière plus ou moins spécifique. En d'autres termes, il existe des méthodes d'entraînement qui sollicitent les deux composantes de manière relativement sélective et les améliorent par la suite. C'est dans ce contexte qu'il faut voir l'affirmation faite au début sur les avantages du HIIT. Pour simplifier l'application de ces faits physiologiques à l'entraînement, nous avons développé le modèle à 3 composantes de la capacité cardiovasculaire. Celui-ci se compose du potentiel, de l'exploitation et de la résistance à la fatigue et est présenté ci-dessous.

Résumons la situation : La composante centrale de la consommation d'oxygène dépend de la fréquence cardiaque et du volume de battement, la composante périphérique de l'épuisement de l'oxygène.

Étant donné que le volume de battements augmente avec un entraînement spécifique, mais que le débit cardiaque (ainsi que la demande en oxygène) reste à peu près le même pour un effort sous-maximal, nous mesurons une fréquence cardiaque plus basse après une phase d'entraînement pour un effort identique. C'est donc le volume de battements qui augmente grâce à l'entraînement (meilleure fonctionnalité de la contraction cardiaque et muscle cardiaque plus grand). Pour une fréquence cardiaque maximale constante, la capacité maximale de transport sanguin du cœur (le débit cardiaque maximal) augmente donc. Parallèlement, la fréquence cardiaque au repos diminue, car le cœur doit battre moins souvent pour transporter la même quantité de sang en raison du volume de battements plus important.

L'entraînement n'améliore pas seulement la composante centrale, mais aussi la différence artério-veineuse d'oxygène et donc l'épuisement de l'oxygène dans le sang. Cette amélioration est principalement due à une meilleure capillarisation (volume capillaire plus important dans les tissus, p. ex. plus de capillaires par fibre musculaire) et à un volume mitochondrial accru (mitochondries plus nombreuses ou plus grandes). En périphérie, la répartition fine de l'oxygène s'améliore ainsi que son utilisation.

Il est intéressant de noter que les composantes centrale et périphérique de la consommation d'oxygène peuvent être entraînées de manière plus ou moins spécifique. En d'autres termes, il existe des méthodes d'entraînement qui sollicitent les deux composantes de manière relativement sélective et les améliorent par la suite. C'est dans ce contexte qu'il faut voir l'affirmation faite au début sur les avantages du HIIT. Pour simplifier l'application de ces faits physiologiques à l'entraînement, nous avons développé le modèle à 3 composantes de la capacité cardiovasculaire. Celui-ci se compose du potentiel, de l'exploitation et de la résistance à la fatigue et est présenté ci-dessous.

Résumons la situation : La composante centrale de la consommation d'oxygène dépend de la fréquence cardiaque et du volume de battement, la composante périphérique de l'épuisement de l'oxygène.

Étant donné que le volume de battements augmente avec un entraînement spécifique, mais que le débit cardiaque (ainsi que la demande en oxygène) reste à peu près le même pour un effort sous-maximal, nous mesurons une fréquence cardiaque plus basse après une phase d'entraînement pour un effort identique. C'est donc le volume de battements qui augmente grâce à l'entraînement (meilleure fonctionnalité de la contraction cardiaque et muscle cardiaque plus grand). Pour une fréquence cardiaque maximale constante, la capacité maximale de transport sanguin du cœur (le débit cardiaque maximal) augmente donc. Parallèlement, la fréquence cardiaque au repos diminue, car le cœur doit battre moins souvent pour transporter la même quantité de sang en raison du volume de battements plus important.

L'entraînement n'améliore pas seulement la composante centrale, mais aussi la différence artério-veineuse d'oxygène et donc l'épuisement de l'oxygène dans le sang. Cette amélioration est principalement due à une meilleure capillarisation (volume capillaire plus important dans les tissus, p. ex. plus de capillaires par fibre musculaire) et à un volume mitochondrial accru (mitochondries plus nombreuses ou plus grandes). En périphérie, la répartition fine de l'oxygène s'améliore ainsi que son utilisation.

Il est intéressant de noter que les composantes centrale et périphérique de la consommation d'oxygène peuvent être entraînées de manière plus ou moins spécifique. En d'autres termes, il existe des méthodes d'entraînement qui sollicitent les deux composantes de manière relativement sélective et les améliorent par la suite. C'est dans ce contexte qu'il faut voir l'affirmation faite au début sur les avantages du HIIT. Pour simplifier l'application de ces faits physiologiques à l'entraînement, nous avons développé le modèle à 3 composantes de la capacité cardiovasculaire. Celui-ci se compose du potentiel, de l'exploitation et de la résistance à la fatigue et est présenté ci-dessous.

Le potentiel

On appelle potentiel la quantité maximale d'oxygène que le corps humain est capable d'utiliser (VO2max). L'oxygène est absorbé dans le sang à partir de l'air ambiant dans les poumons. Le sang riche en oxygène alimente ensuite tous les organes en oxygène via le système cardiovasculaire. Dans la musculature squelettique, l'oxygène est ensuite absorbé pour fournir de l'énergie aux cellules musculaires. Le flux sanguin dans le système cardiovasculaire est déterminé en grande partie par la capacité de pompage du cœur. Celle-ci résulte du produit de la fréquence cardiaque et du volume de battement (volume de sang qui peut être éjecté par un seul battement de cœur). Un entraînement par intervalles régulier et intensif entraîne une augmentation du volume des battements et donc une augmentation de la capacité de pompage du cœur, ce qui entraîne une diminution de la fréquence cardiaque lors d'efforts sous-maximaux et au repos (fréquence cardiaque de repos plus basse). Suite à cette adaptation, la fréquence cardiaque augmente également. VO2max.

L'épuisement

L'épuisement indique l'intensité qui peut encore être fournie en tant que performance d'endurance. Selon la définition, cette performance doit pouvoir être réalisée après un échauffement de 10 minutes pendant 20 minutes avec une "concentration constante de lactate dans le sang" (max. lactat steady state). L'épuisement détermine donc dans quelle mesure le potentiel dans le domaine de l'endurance peut être exploité (%VO2max). Il est souvent appelé "seuil anaérobie". Plus la mise à disposition d'énergie aérobie est développée (volume mitochondrial plus élevé, meilleure capillarisation), plus l'épuisement est élevé. Une amélioration de l'épuisement se traduit par la possibilité de fournir des intensités plus élevées dans le domaine de l'endurance.    

La résistance à la fatigue

La résistance à la fatigue définit la durée pendant laquelle un effort d'endurance quelconque peut être fourni (tlim). Différents facteurs jouent un rôle important à cet égard :

  • Un métabolisme aérobie bien entraîné assure la fourniture d'énergie à long terme.    
  • Une thermorégulation efficace permet d'éviter que la température du corps n'augmente trop pendant l'entraînement et ne limite les performances.
  • Plus les réserves de glycogène dans les muscles sont importantes, plus les efforts d'endurance intenses peuvent être réalisés longtemps.
  • Plus les muscles respiratoires sont entraînés, moins ils se fatiguent rapidement pendant les efforts d'endurance intenses.
  • Les aspects mentaux jouent également un rôle déterminant (combien de temps l'arrêt de l'effort peut être retardé lors d'un effort d'endurance fatigant).

Les adaptations de l'entraînement sur tous les points mentionnés ont pour effet de prolonger la durée pendant laquelle une performance sous-maximale peut être fournie.

Avec le méta-entraînement, tu entraînes de manière ciblée ces 3 composantes de la capacité d'endurance qui limitent la performance. Demande conseil à ton COACH.

Catégories
Généralités

La mise à disposition d'énergie

1ère introduction

Qu'il s'agisse de cellules nerveuses qui transmettent des impulsions électriques ou de cellules musculaires qui fournissent un travail mécanique, chaque cellule du corps humain a besoin d'énergie. Cette énergie est stockée à l'intérieur des cellules sous forme d'adénosine triphosphate (ATP) et est libérée lors de la décomposition de l'ATP en adénosine diphosphate (ADP) et en phosphate libre (Pi) est libérée. Étant donné que les muscles ne stockent qu'une quantité très limitée d'ATP, il faut en permanence assurer le réapprovisionnement en ATP à partir d'ADP et de Pi est régénéré. Cette régénération se fait par le biais de 3 systèmes différents, dont l'expression est adaptée aux propriétés des fibres musculaires (essentiellement l'isoforme MyHC, "donc le type de fibre musculaire"). Les systèmes sont

  • le système phosphagène (puissance métabolique la plus élevée mais capacité la plus faible)
  • le système glycolytique (performance métabolique plus faible mais capacité plus élevée que le système phosphagène)
  • la respiration mitochondriale (puissance métabolique la plus faible, mais capacité de loin la plus importante)

2. le système phosphagène

La resynthèse de l'ATP par le système phosphagène a lieu dans le cytoplasme et comprend deux réactions chimiques par lesquelles la fibre musculaire peut récupérer de l'ATP relativement rapidement (réaction créatine kinase et adénylate kinase). 85% de la capacité déjà modeste du système sont limités par la taille des réserves intracellulaires de phosphocréatine (PCr), 15% sont consacrés à la récupération d'énergie par la réaction de l'adénylate kinase.

  • La créatine kinase (enzyme) catalyse la réaction de l'ADP et du PCr en ATP et en créatine (système créatine kinase PCr).
  • L'adénylate kinase (enzyme) transforme 2 parties d'ADP en 1 partie d'ATP et 1 partie d'AMP (adénosine monophosphate).

L'AMP et ses produits de dégradation jouent un rôle central en tant que molécules de signalisation intracellulaire. Par exemple, l'AMP stimule indirectement le transport du glucose et des acides gras dans les cellules musculaires ainsi que la métabolisation de ces sources d'énergie dans les mitochondries. De plus, elle stimule indirectement la décomposition du glycogène. Enfin, elle est liée à la biogenèse mitochondriale et les concentrations intracellulaires d'ADP et de créatine stimulent la respiration mitochondriale. Ainsi, les produits de dégradation de la décomposition de l'ATP et les composants du système phosphagène influencent directement les deux autres systèmes de production d'énergie. Comme le système phosphagène est soutenu dès le début par les deux autres systèmes, il peut contribuer de manière déterminante à la fourniture d'énergie pendant plus de 20 secondes. S'il était livré à lui-même, les réserves de PCr seraient épuisées au bout de 10 secondes. Dans la vie quotidienne, le système phosphagène nous permet d'amortir les changements rapides et de courte durée des besoins en ATP (par exemple, se lever d'une chaise, passer de la marche au sprint, etc. Le système phosphagène est particulièrement bien développé dans les fibres musculaires de type II par rapport aux fibres de type I. Les fibres musculaires de type II sont les plus riches en ATP.

3 Le système glycolytique

Le système glycolytique comprend le processus biochimique de la glycolyse. Celle-ci a lieu dans le cytoplasme cellulaire, tout comme les processus du système phosphagène. Le point de départ de la glycolyse est

glucose-6-phosphate, qui peut provenir soit du glucose libre (glycémie issue de l'alimentation, glycogène hépatique décomposé ou gluconéogenèse dans le foie à partir d'acides aminés), soit du produit de dégradation directe du glycogène musculaire. Tout comme le système phosphagène, le système glycolytique est plus développé dans les fibres musculaires de type II que dans les fibres musculaires de type I, les fibres musculaires de type II disposant également de plus grandes réserves de glycogène que les fibres musculaires de type I et pouvant mieux décomposer le glycogène. Les fibres musculaires de type II sont donc conçues pour "préparer" l'ATP via le système glycolytique. C'est pourquoi les sollicitations musculaires intenses, comme l'entraînement musculaire, ont pour conséquence que les réserves de glycogène des fibres musculaires de type II se vident en premier lieu en raison du recrutement des grandes unités motrices, alors que l'entraînement d'endurance vide principalement les réserves de glycogène des fibres de type I. Les fibres musculaires de type I sont donc plus sensibles aux sollicitations musculaires intenses.

A la fin des 10 étapes de la glycolyse, on obtient la molécule de pyruvate. Celle-ci peut alors être soit transformée en lactate dans le cytoplasme cellulaire, soit introduite dans le cycle du citrate dans les mitochondries.

Lorsque le pyruvate issu de la glycolyse est transformé en lactate, on parle de glycolyse anaérobie. Ceci, non pas parce qu'il n'y a pas d'oxygène, mais tout simplement parce que ces réactions ne nécessitent pas d'oxygène. La conversion de a) pyruvate en lactate et b) vice versa est catalysée par différentes formes de l'enzyme lactate déshydrogénase, avec par exemple une prédominance de a) dans les fibres musculaires de type II et de b) dans les fibres musculaires de type I. Pour simplifier, les fibres musculaires glycolytiques produisent donc du lactate et le libèrent dans le sang. Par la suite, les fibres musculaires oxydatives absorbent le lactate, le transforment en pyruvate et l'oxydent. D'autres organes absorbent également le lactate dans le sang et utilisent cette molécule riche en énergie comme matière première pour les processus métaboliques (foie : gluconéogenèse et production d'énergie ; cœur, cerveau, reins : production d'énergie). Contrairement à une opinion largement répandue, le lactate n'est donc pas un déchet du métabolisme anaérobie. Il parvient dans le sang via des transporteurs spécifiques toujours en combinaison avec un proton de la cellule musculaire glycolytique (l'absorption dans les fibres musculaires oxydatives se fait également via des transporteurs).

Si le pyruvate n'est pas transformé en lactate, il pénètre dans la mitochondrie et est transformé en acétylcoenzyme A (acétyl-CoA) via la pyruvate déshydrogénase. L'acétyl-CoA est la substance de base pour la production d'énergie aérobie dans la mitochondrie. C'est pourquoi on parle dans ce cas de glycolyse aérobie ("en utilisant de l'oxygène", et non "en présence d'oxygène"). En plus de la production d'acétyl-CoA à partir du pyruvate, l'acétyl-CoA peut également être produit dans les mitochondries par le processus de β-oxydation à partir des acides gras. Les acides gras arrivent du sang dans les fibres musculaires via des transporteurs d'acides gras, les fibres musculaires de type I étant mieux équipées de ces transporteurs que les fibres musculaires de type II. Dans le plasma cellulaire des fibres musculaires, les acides gras sont activés et transportés vers les mitochondries. Pour ce faire, ils sont brièvement liés à la carnitine. La carnitine joue donc le rôle de navette dans le métabolisme des graisses. Sans carnitine, aucune graisse ne pourrait être métabolisée. De plus, la carnitine fait office de tampon pour l'acétyl-CoA, dans la mesure où, en cas de forte sollicitation musculaire, la quantité d'acétyl-CoA produite est supérieure à celle qui peut être injectée à court terme dans le cycle du citrate. Une accumulation d'acétyl-CoA inhibe l'oxydation des acides gras et augmente la production de lactate.

4 La respiration mitochondriale

A l'intérieur de la mitochondrie, l'acétyl-CoA se forme à partir des acides gras activés via la β-oxydation. Celui-ci est ensuite métabolisé dans le cycle du citrate, tout comme l'acétyl-CoA issu du pyruvate, et est finalement transformé en ADP et Pi ATP se régénère. Dans le cycle du citrate, l'acétyl-CoA produit du dioxyde de carbone (CO2(qui diffuse dans le sang et est expiré par les poumons) et des équivalents de réduction

(molécules qui transfèrent de l'hydrogène et/ou des électrons). Les équivalents réducteurs se déplacent ensuite le long de la membrane mitochondriale interne, de complexe protéique en complexe protéique, et sont finalement transférés à l'oxygène, libérant ainsi de l'eau et de la chaleur. Ce processus complexe génère un potentiel électrochimique dont l'énergie est utilisée pour la resynthèse de l'ATP. La consommation d'oxygène mitochondriale détermine donc les besoins en oxygène de l'organisme.

Catégories
Généralités

Énergie

Informations générales

L'énergie (ou sa mise à disposition) est une base de la vie. Pour que le corps fonctionne correctement, un apport énergétique suffisant doit être assuré par l'alimentation. La teneur en énergie de l'alimentation est indiquée en joules (J) ou en kilojoules (kJ). Afin d'éviter des valeurs trop importantes lors de l'indication en joules, on les abrège volontiers : 1'000'000 J = 1000 kJ = 1 mégajoule (MJ). L'utilisation de l'unité "calorie" ou "kilocalorie" est obsolète et n'est plus autorisée aujourd'hui dans le monde entier ; en Suisse, l'interdiction existe même depuis 1977. Il est très simple de convertir la calorie obsolète en joules, il suffit de multiplier les indications de calories par quatre environ. Inversement, on divise les joules par quatre pour obtenir les calories (les facteurs les plus précis sont : 1kJ = 0,24 kcal ou 1 kcal = 4,18 kJ).

Fournisseurs d'énergie

Les glucides, les lipides et les protéines sont les trois nutriments qui jouent un rôle important en tant que sources d'énergie pour les personnes en bonne santé. L'alcool est une source d'énergie supplémentaire, mais son importance quantitative n'est pas élevée chez les personnes en bonne santé. Le contenu énergétique des différents nutriments est indiqué ci-dessous.

Source d'énergieTeneur en énergie par gramme
 kJkcal
Glucides174
Grosse389
Protéines174
Alcool297

On trouve encore dans la littérature d'innombrables rapports (le plus souvent discutables) concernant la répartition des fournisseurs d'énergie dans l'alimentation. Ces recommandations s'adressent généralement à des personnes modérément actives et s'appuient souvent sur les recommandations longtemps "valables" de réduction de la part de graisses (surtout d'acides gras saturés). De même, il n'est pas rare que ces recommandations contiennent des quantités de protéines relativement faibles, qui s'orientent sur les besoins effectifs des personnes inactives. Elles ne tiennent pas compte du fait que des quantités plus élevées de protéines peuvent également être utiles et avoir un effet biologique. Les recommandations avec de faibles quantités de lipides et de protéines conduisent automatiquement à un apport élevé en glucides. C'est pourquoi, malgré des données d'études contradictoires, de nombreuses organisations de nutrition continuent de soutenir des régimes riches en hydrates de carbone et pauvres en graisses. Ceci malgré le fait qu'il existe entre-temps des preuves solides que l'apport en glucides devrait être réduit et l'apport en protéines et en graisses augmenté chez les personnes physiquement inactives.

La recommandation actuelle concernant l'apport énergétique pour les adultes en bonne santé ayant une faible activité physique selon DACH (valeurs de référence pour l'espace germanophone) ainsi qu'une répartition alternative des macronutriments selon les tendances actuellement discutées dans le domaine de la nutrition sont énumérées ci-dessous.

Source d'énergieApports recommandés en pourcentage d'énergie
 Valeurs de référence DACHAlternative
Glucides> 50 %environ 40-50 %
Grosse≤ 30 %env. 30-40 %
Protéines9-11 %env. 15-20 %

Contrairement aux personnes inactives, les sportifs ont besoin d'un apport accru en glucides en fonction du sport qu'ils pratiquent, même si cet apport ne présente aucun risque pour la santé des personnes actives sur le plan sportif.

Indications énergétiques : relatives ou absolues ?

La plupart des organisations de nutrition et de santé indiquent les recommandations d'apport en macronutriments comme % de l'apport énergétique total. Tant que le groupe cible de la recommandation présente une consommation énergétique homogène, de telles indications sont réalisables. Mais pour les sportifs, les indications relatives en % de l'apport énergétique total n'ont guère de sens. En effet, les besoins énergétiques dans le sport peuvent varier fortement en fonction du type de sport et du niveau de performance. C'est la raison pour laquelle les recommandations en matière d'alimentation sportive utilisent des valeurs absolues, c'est-à-dire des g de nutriments par kg de masse corporelle, même si là encore, la praticabilité est limitée (il vaut mieux travailler avec des pyramides alimentaires). Les valeurs absolues sont présentées ci-dessous.

Apports selon la pyramide alimentaire en g par kg de KM
 Faible activitéSportifs/ives
Glucides3.55 à 10
Grosse1.31 à 3
Protéines1.51.2 à 2.0

Besoin en énergie

Pour simplifier, le métabolisme de base et les besoins énergétiques liés à l'activité physique constituent ensemble les besoins énergétiques totaux. Le métabolisme de base correspond à la quantité minimale d'énergie nécessaire au maintien de toutes les fonctions métaboliques vitales (y compris la digestion = "effet thermogénique des aliments") d'une personne en bonne santé qui se trouve au repos absolu depuis au moins huit heures, qui est éveillée et qui n'a rien mangé depuis 10 à 12 heures. Le taux métabolique du travail reflète la dépense énergétique liée au travail physique et dépend du type de travail, de l'intensité et de la durée de l'activité. En outre, la dépense énergétique totale est également liée à différents facteurs tels que la croissance, la grossesse, l'allaitement, le comportement, la maladie, le stress ou l'environnement.

Le taux métabolique de base

Chez les personnes peu actives physiquement, le métabolisme de base représente la plus grande partie de la dépense énergétique totale (environ 60%). Il est déterminé par différents facteurs tels que le sexe, l'âge, la masse et la surface corporelles ou la génétique, la masse corporelle maigre étant la plus importante (une grande partie de la consommation d'énergie dans la masse maigre est nécessaire à la synthèse des protéines musculaires). Avec l'âge, la masse corporelle maigre diminue. Comme les hommes disposent de plus de masse musculaire que les femmes, leur métabolisme de base est inférieur d'environ 10% à celui des hommes. Il existe certes de nombreuses formules pour calculer le métabolisme de base, mais elles ne permettent que d'approcher approximativement le métabolisme de base réel (les écarts individuels se situent entre -30 et +40%). Seule une mesure du taux métabolique de base par calorimétrie permet d'obtenir un résultat fiable.

La consommation d'énergie de travail

L'énergie est nécessaire à chaque activité physique (chaque contraction musculaire). Pour une personne active qui reste assise pendant de longues heures et qui fait peu d'exercice pendant ses loisirs, ce faible niveau d'activité représente environ 20 à 30% du métabolisme de base (consommation d'énergie supplémentaire par rapport au métabolisme de base). Comme le besoin énergétique total peut être exprimé comme un multiple du métabolisme de base, on multiplie le métabolisme de base des personnes inactives par 1,2, respectivement 1,3 (100 % de métabolisme de base plus 20-30% pour l'activité physique). Ce facteur est appelé Physical Activity Level (PAL). Un aperçu des valeurs PAL est présenté ci-dessous.

Comportement/situationPALExemples
Taux métabolique de base1.0 
Mode de vie exclusivement sédentaire ou couché1.2Personnes âgées et fragiles
Activités sédentaires avec peu de loisirs1.4-1.5Employés de bureau, mécaniciens de précision
Activité assise, temporairement en marchant ou en étant debout1.6-1.7Laborantin, étudiant, ouvrier à la chaîne
Travail principalement en position debout ou en marchant1.8-1.9Vendeur, serveur, mécanicien
Travail professionnel physiquement exigeant2.0-2.4Ouvrier du bâtiment, agriculteur, ouvrier forestier

Bilan énergétique

Le bilan énergétique correspond à la différence entre l'absorption et la consommation d'énergie. Si l'apport et la consommation d'énergie sont égaux, on parle de bilan nul ou de bilan énergétique équilibré. Sur une longue période, un bilan positif entraîne une prise de poids, car l'excédent d'énergie est obligatoirement stocké dans le corps. Inversement, un bilan énergétique négatif à long terme entraîne une diminution de la masse corporelle. Les principaux facteurs influençant le bilan énergétique sont donc l'apport alimentaire et la consommation d'énergie. Cependant, comme la répartition des sources d'énergie a également une influence sur la consommation d'énergie, le type d'apport semble également jouer un (petit) rôle.

Besoins énergétiques pour le sport

Des valeurs approximatives pour différents types et intensités de sport sont disponibles sous https://sites.google.com/site/compendiumofphysicalactivities/.

Stockage d'énergie

Le corps ne peut stocker de l'énergie que sous forme de graisses ou de glucides. La graisse est la substance de stockage idéale pour le corps. Elle peut stocker beaucoup d'énergie dans un espace réduit, car la graisse contient d'abord plus du double d'énergie par gramme que les glucides et peut en outre être stockée presque sans eau. Lors du stockage des glucides, il faut également stocker presque le double du poids de stockage en eau. De plus, les réserves de glucides sont très limitées.